skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Yanping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we propose Longshot, a novel design for secure outsourced database systems that supports ad-hoc queries through the use of secure multi-party computation and differential privacy. By combining these two techniques, we build and maintain data structures (i.e., synopses, indexes, and stores) that improve query execution efficiency while maintaining strong privacy and security guarantees. As new data records are uploaded by data owners, these data structures are continually updated by Longshot using novel algorithms that leverage bounded information leakage to minimize the use of expensive cryptographic protocols. Furthermore, Long-shot organizes the data structures as a hierarchical tree based on when the update occurred, allowing for update strategies that provide logarithmic error over time. Through this approach, Longshot introduces a tunable three-way trade-off between privacy, accuracy, and efficiency. Our experimental results confirm that our optimizations are not only asymptotic improvements but also observable in practice. In particular, we see a 5x efficiency improvement to update our data structures even when the number of updates is less than 200. Moreover, the data structures significantly improve query runtimes over time, about ~103x faster compared to the baseline after 20 updates. 
    more » « less
  2. Physical distancing between individuals is key to preventing the spread of a disease such as COVID-19. On the one hand, having access to information about physical interactions is critical for decision makers; on the other, this information is sensitive and can be used to track individuals. In this work, we design Poirot, a system to collect aggregate statistics about physical interactions in a privacy-preserving manner. We show a preliminary evaluation of our system that demonstrates the scalability of our approach even while maintaining strong privacy guarantees. 
    more » « less
  3. Shallow groundwater in the Prairie Pothole Region (PPR) is recharged predominantly by snowmelt in the spring and may supply water for evapotranspiration through the summer/fall. This two-way exchange is underrepresented in land-surface models. Furthermore, the impacts of climate change on the groundwater recharge are uncertain. In this paper, we use a coupled land and groundwater model to investigate the hydrologic cycle of shallow groundwater in the PPR and study its response to climate change at the end of the 21st century. The results show that the model reasonably simulates the water table depth (WTD) and the timing of recharge processes, but underestimates the seasonal variation of WTD, due to mismatches of the soil types between observations and the model. The most significant change under future climate occurs in the winter, when warmer temperature changes the rain/snow partitioning, delay the time for snow accumulation/soil freezing while bring forward early melting/thawing. Such changes lead to an earlier start to a longer recharge season, but with lower recharge rates. Different signals are shown in the eastern and western PPR in the future summer, with reduced precipitation and drier soils in the east but little change in the west. The annual recharge increased by 25% and 50% in the eastern and western PPR, respectively. Additionally, we found the mean and seasonal variation of the simulated WTD are sensitive to soil properties and fine-scale soil information is needed to improve groundwater simulation on regional scale. 
    more » « less
  4. null (Ed.)
  5. Abstract Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant immunity induced by mobile signals produced in the local leaves where the initial infection occurs. Although multiple structurally unrelated signals have been proposed, the mechanisms responsible for perception of these signals in the systemic leaves are unknown. Here, we show that exogenously applied nicotinamide adenine dinucleotide (NAD+) moves systemically and induces systemic immunity. We demonstrate that the lectin receptor kinase (LecRK), LecRK-VI.2, is a potential receptor for extracellular NAD+(eNAD+) and NAD+phosphate (eNADP+) and plays a central role in biological induction of SAR. LecRK-VI.2 constitutively associates with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in vivo. Furthermore, BAK1 and its homolog BAK1-LIKE1 are required for eNAD(P)+signaling and SAR, and the kinase activities of LecR-VI.2 and BAK1 are indispensable to their function in SAR. Our results indicate that eNAD+is a putative mobile signal, which triggers SAR through its receptor complex LecRK-VI.2/BAK1 inArabidopsis thaliana. 
    more » « less
  6. Abstract BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant has caused a dramatic resurgence in infections in the United Sates, raising questions regarding potential transmissibility among vaccinated individuals. MethodsBetween October 2020 and July 2021, we sequenced 4439 SARS-CoV-2 full genomes, 23% of all known infections in Alachua County, Florida, including 109 vaccine breakthrough cases. Univariate and multivariate regression analyses were conducted to evaluate associations between viral RNA burden and patient characteristics. Contact tracing and phylogenetic analysis were used to investigate direct transmissions involving vaccinated individuals. ResultsThe majority of breakthrough sequences with lineage assignment were classified as Delta variants (74.6%) and occurred, on average, about 3 months (104 ± 57.5 days) after full vaccination, at the same time (June-July 2021) of Delta variant exponential spread within the county. Six Delta variant transmission pairs between fully vaccinated individuals were identified through contact tracing, 3 of which were confirmed by phylogenetic analysis. Delta breakthroughs exhibited broad viral RNA copy number values during acute infection (interquartile range, 1.2-8.64 Log copies/mL), on average 38% lower than matched unvaccinated patients (3.29-10.81 Log copies/mL, P < .00001). Nevertheless, 49% to 50% of all breakthroughs, and 56% to 60% of Delta-infected breakthroughs exhibited viral RNA levels above the transmissibility threshold (4 Log copies/mL) irrespective of time after vaccination. ConclusionsDelta infection transmissibility and general viral RNA quantification patterns in vaccinated individuals suggest limited levels of sterilizing immunity that need to be considered by public health policies. In particular, ongoing evaluation of vaccine boosters should specifically address whether extra vaccine doses curb breakthrough contribution to epidemic spread. 
    more » « less